Quantum dots in carbon nanotubes

نویسندگان

  • Sami Sapmaz
  • Pablo Jarillo-Herrero
  • Leo P Kouwenhoven
  • Herre S J van der Zant
چکیده

In this overview paper, we present low-temperature electronic transport measurements of carbon nanotube quantum dots with a back gate. In a semiconducting tube, charge carriers could be completely depleted. The addition energy and the excitation spectrum have been studied as a function of the number of charges (electrons or holes), one by one. We observe electron–hole symmetry, which is a direct consequence of the symmetric band structure of the nanotube. The excitation spectrum for metallic nanotubes exhibits four-fold shell filling and is completely described by an extended constant-interaction model. Furthermore, nanotubes with a four-fold shell structure are investigated in a parallel magnetic field. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. Also, a small coupling is found between orbitals with opposite magnetic moments leading to anti-crossing behaviour at zero field. Current–voltage characteristics of suspended carbon nanotube quantum dots show an additional series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-k phonon mode (stretching mode) in the nanotube. Finally, we report on a fully tunable carbon nanotube double quantum dot. We perform inelastic transport spectroscopy via the excited states in the double quantum dot, a necessary step towards the implementation of new microwave-based experiments for quantum information technology. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

Single-wall Carbon Nanotubes with Ferromagnetic Electrodes

The electron transport in single-wall carbon nanotubes is one-dimensional and ballistic. Typically carbon nanotubes form tunneling contacts to electrodes and behave as quantum dots at low temperatures. We report on experiments on carbon nanotubes contacted with ferromagnetic metal. In these devices strong hysteretic magnetoresistance is observed at low temperatures. A possible interpretation of...

متن کامل

In situ electrochemical organization of CdSe nanoclusters on graphene during unzipping of carbon nanotubes.

In situ decoration of very small CdSe quantum dots on graphene nanoribbons (GNRs) has been achieved during the electrochemical unzipping of single walled carbon nanotubes. Critical parameters like the width of the GNRs, size distribution of quantum dots and their organization on GNRs have been shown to be strongly dependent on the electric field and time.

متن کامل

Shell filling in closed single-wall carbon nanotube quantum dots.

We observe twofold shell filling in the spectra of closed one-dimensional quantum dots formed in single-wall carbon nanotubes. Its signatures include a bimodal distribution of addition energies, correlations in the excitation spectra for different electron number, and alternation of the spins of the added electrons. This provides a contrast with quantum dots in higher dimensions, where such spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006